Phylogenetic Diversity and Environment-Specific Distributions of Glycosyl Hydrolase Family 10 Xylanases in Geographically Distant Soils

نویسندگان

  • Guozeng Wang
  • Kun Meng
  • Huiying Luo
  • Yaru Wang
  • Huoqing Huang
  • Pengjun Shi
  • Peilong Yang
  • Zhifang Zhang
  • Bin Yao
چکیده

BACKGROUND Xylan is one of the most abundant biopolymers on Earth. Its degradation is mediated primarily by microbial xylanase in nature. To explore the diversity and distribution patterns of xylanase genes in soils, samples of five soil types with different physicochemical characters were analyzed. METHODOLOGY/PRINCIPAL FINDINGS Partial xylanase genes of glycoside hydrolase (GH) family 10 were recovered following direct DNA extraction from soil, PCR amplification and cloning. Combined with our previous study, a total of 1084 gene fragments were obtained, representing 366 OTUs. More than half of the OTUs were novel (identities of <65% with known xylanases) and had no close relatives based on phylogenetic analyses. Xylanase genes from all the soil environments were mainly distributed in Bacteroidetes, Proteobacteria, Acidobacteria, Firmicutes, Actinobacteria, Dictyoglomi and some fungi. Although identical sequences were found in several sites, habitat-specific patterns appeared to be important, and geochemical factors such as pH and oxygen content significantly influenced the compositions of xylan-degrading microbial communities. CONCLUSION/SIGNIFICANCE These results provide insight into the GH 10 xylanases in various soil environments and reveal that xylan-degrading microbial communities are environment specific with diverse and abundant populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Genetic Diversity and Different Distributions of Glycosyl Hydrolase Family 10 and 11 Xylanases in the Goat Rumen

BACKGROUND The rumen harbors a complex microbial ecosystem for efficient hydrolysis of plant polysaccharides which are the main constituent of the diet. Xylanase is crucial for hemicellulose hydrolysis and plays an important role in the plant cell wall degradation. Xylanases of ruminal strains were widely studied, but few studies have focused on their diversity in rumen microenvironment. METH...

متن کامل

High Phylogenetic Diversity of Glycosyl Hydrolase Family 10 and 11 Xylanases in the Sediment of Lake Dabusu in China

Soda lakes are one of the most stable naturally occurring alkaline and saline environments, which harbor abundant microorganisms with diverse functions. In this study, culture-independent molecular methods were used to explore the genetic diversity of glycoside hydrolase (GH) family 10 and GH11 xylanases in Lake Dabusu, a soda lake with a pH value of 10.2 and salinity of 10.1%. A total of 671 x...

متن کامل

Biochemistry and genetics of microbial xylanases.

Xylanases are classified into two major families (10 or F and 11 or G) of glycosyl hydrolases. Both use ion pair catalytic mechanisms and both retain anomeric configuration following hydrolysis. Family 10 xylanases are larger, more complex and produce smaller oligosaccharides; Family 11 xylanases are more specific for xylan. Alkaline-active and extreme-thermophilic enzymes are of particular int...

متن کامل

Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags.

Arctic tundra and boreal forest soils have globally relevant functions that affect atmospheric chemistry and climate, yet the bacterial composition and diversity of these soils have received little study. Serial analysis of ribosomal sequence tags (SARST) and denaturing gradient gel electrophoresis (DGGE) were used to compare composite soil samples taken from boreal and arctic biomes. This stud...

متن کامل

Emerging role of N- and C-terminal interactions in stabilizing (β/α)8 fold with special emphasis on Family 10 xylanases

Xylanases belong to an important class of industrial enzymes. Various xylanases have been purified and characterized from a plethora of organisms including bacteria, marine algae, plants, protozoans, insects, snails and crustaceans. Depending on the source, the enzymatic activity of xylanases varies considerably under various physico-chemical conditions such as temperature, pH, high salt and in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012